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1. Background and Goal of the present work.  

 

Detection of the weak signature of degradation of the Reactor Coolant Pump (RCP) at early stage gives more time for 

maintenance reaction, safety decision-making and also provides economic benefits. An integrated and improved method to 

detect and identify abnormality using continuous wavelet transform based sparse code shrinkage de-noising algorithm is 

suggested in this work. For RCP roller bearings, periodic impulses indicate the occurrence of faults in the components. 

However, it is difficult to detect the impulses because they are rather weak and are often immersed in heavy noise. Existing 

wavelet threshold de-noising methods do not work well because they use orthogonal wavelets, which do not match the 

impulse very well and do not utilize prior information on the impulse. Therefore, in order to suppress any undesired 

information and highlight the features of interest, a new method for wavelet threshold de-noising is proposed in this paper. It 

employs an adapted Morlet wavelet as the basic wavelet for matching the impulse and also uses the Maximum Likelihood 

Estimation (MLE) for thresholding by utilizing prior information on the probability density function (pdf) of the impulse. By 

using MLE de-noising method, the inspected signal is analyzed in a more exact way even with a very low signal-to-noise 

ratio. 

1.1. Review of wavelet Transform 

  

The wavelet transform of a finite energy signal          with the analyzing wavelet          is the convolution of  with a scaled 

and conjugated wavelet. Let             the daughter wavelets of the mother wavelet           , which is derived by varying both 

the scale factor  a  and the shifting parameter b :  

 

 

The wavelet transform is defined as: 

 

 

 

The parameters of translation a  and dilation b, may be continuous or discrete, the asterisk stands for complex conjugate. 

The factor              is used to ensure energy preservation.           indicates that the wavelet analysis is a time-frequency 

analysis, or a time-scaled analysis of a signal through dilation and translation.  

 

1.2. Mechanical impulse modelling   

  

The system subjected to an impact load may be formulated as a single degree of freedom system which has the form of:  

 

 

 

 

When the initial displacement and velocity of the system are zero, the solution for  Eq. (3)  can be rewritten as:   

    

 

 

 

 

2. Choice of the analyzing wavelet   

 

Eq. (6) indicates that the impulsive feature, which is caused by external impact load, is characterized by an oscillation with 

decaying amplitude. So according to the matching mechanism of wavelet transform, Morlet wavelet could be a more 

suitable wavelet function for extracting such types of features because Morlet wavelet has a more similar shape to the 

impulsive feature. Morlet wavelet is derivative of a Gaussian function, so these wavelets have Gaussian window in 

frequency domain. In time domain, the Morlet wavelet can be expressed as :     

 

  

 

It is shown that the function decays exponentially on both sides. The wavelet transform using Morlet wavelet as analysis 

function can take the following form:    

 

 

 

It is obvious from Eq. (7) that the shape of the basic wavelet is controlled by parameter β. When β tends to be infinite, the 

Morlet wavelet becomes a Dirac function with the finest time resolution. With β tending to be 0, the Morlet wavelet becomes 

a cosine function which has the finest frequency resolution. Therefore, there is always an optimal β with the best time-

frequency resolution for a certain signal localized in the time-frequency plane. An approach to find the appropriate 

parameters that can construct an optimal wavelet transform is proposed in the next section. This modified Morlet wavelet 

function offers a better compromise in terms of localisation, in both time and frequency for a signal, than the traditionally 

Morlet wavelet function.    

 
3. Optimal Morlet wavelet for impulse detection   

 

The sparseness of wavelet coefficients is often used as the rule for evaluating the efficiency of wavelet transforms. The 

wavelet corresponding to the fewest and dominant wavelet transformation coefficients of a signal is ideal. Therefore, a 

variety of sparseness measurement criteria are proposed by researchers. Shannon entropy is one of the well-adopted 

sparseness criterion. Thereby, wavelet transform coefficients with minimal Shannon entropy can be treated as the sparsest 

result. Therefore, the corresponding shape factor β can be adopted as the optimal result. Shannon entropy is defined as:  

 

 

 

 

4. Sparse code shrinkage threshold using the optimal Morlet wavelet transform  

 

The basic idea behind wavelet thresholding is that the energy of the signal to be identified will concentrate on a few wavelet 

coefficients while the energy of noise will spread throughout all wavelet coefficients. In view of this, Hyvärinen has 

proposed a so-called sparse code shrinkage method ‘SCS’ to estimate non-Gaussian data under noisy conditions. It is 

based on the MLE principle and is successfully used for image de-noising. It demands that the non-Gaussian variable 

follow a sparse distribution. The pdf of a sparse distribution is characterized with a spike at point zero. To represent a 

sparse distribution, Hyvärinen proposes the following function form:   

 

 

 

 

For an impulse whose pdf can be represented by Eq. 10, Hyvärinen proposes the following thresholding rule:    

 

 

 

 

The reconstruction results from shrunken wavelet coefficients using the thresholding rule given in Eq. 11 represent an 

approximation to the impulse. 

 

5. Simulation study 

 

The impulses generated by damaged mechanical components often exhibit the shapes shown in Fig.1.a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                       (b) 

Fig.1. (a): Simulated impulses, (b): Simulated impulses with heavy background Gaussian noise 

  

The signal shown in Fig.1.b is used to test the effectiveness of the proposed method to extract weak periodical impulses 

from the vibration signals with heavy background noise. The optimal Morlet wavelet is constructed based on the 

optimization algorithm. The optimal parameter is found as: β = 0.7.  

 

  

 

6. Experimental results  

 

To investigate the effectiveness of SCS de-noising method a series of vibration signals collected from a test rig and from a 

real machine which is the hydraulic pump of NUR Reactor primary cooling loop system as shown in figures Fig.3 and Fig.4 

were analyzed for detecting faults. Vibration signals are collected from accelerometer mounted on the bearing housing.   

 

 

 

 

  

         

 

 

 

 

 

 

  

Fig.3. Photograph of the test rig.           Fig.4. NUR  Reactor Tested Hydraulic Pump 

  

A radial acceleration signal was picked up from the top of the tested bearing casing by a B&K 4371 transducer. Afterward, 

the signal is amplified and band-pass filtered by a B&K charge amplifier into the frequency range from 0.2 Hz to 20 kHz and 

recorded on the dual channel frequency analyzer B&K 2133. Acquisitions were transferred to the PC where Matlab 

programs were implemented to execute signal analyses and wavelet transforms calculations. Based on the geometric 

parameters and the rotational speed of ball bearings, fault characteristic frequencies of bearings are estimated and listed in 

the following Table 1.      
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Table 1. Characteristics of the tested bearings 

  

Time and spectral amplitude representing the effect of the crossing of the balls over artificial spall in the test rig bearing is 

presented in Fig.5. 

  

 

 

 

 

 

 

 

 

 

 

     

 

 

 

Fig.5. Vibration signal of the tested bearing and its Power spectrum  

Bearing type (Test rig bearing) (RCP bearing 1) (RCP bearing 2) 

Rotating speed (tr/min) 

Number of rolling elements 

Rotating frequency 

 

Ball Passing Frequency Inner Race - BPFI 

,  

 

Ball passing Frequency Outer Race - BPFO 

,  
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(a): Original Signal
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(a) : Original Signal
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Then, the SCS method is employed to further remove the noise and isolate the impulses. The extracted impulses are 

presented in Fig.2.a, from which it is observed that all the impulses immersed in noise are picked out.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

(a)                                                                                            (b) 

Fig.2. (a): Result by MLE thresholding, (b): Result by Donoho’s soft-thresholding 

  

To further prove the superiority of the proposed method, we also processed the simulation signal using Donoho's ‘soft-

thresholding de-noising’. Its de-noising result is shown in Fig.2.b. Though several true impulses are extracted, a lot of fake 

impulses also exist, which would affect the recognition of true impulses. 
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On the grounds of these observations, it appears clear that the effectiveness of the spectral analysis for the bearing 

diagnostics proves inadequate to operate correct monitoring. The bearing faults cannot be diagnosed with certainty 

since spectra provide peaks, located at the fault characteristic frequencies, whose amplitudes are comparable to the 

corresponding ones related to the bearing in sound condition. Noise prevails over the effect of periodic impulses.  

However, through the inverse wavelet transform of the thresholded modulus, the reconstructed signal after de-noising by 

SCS method on the test rig bearing signal is shown in Fig.8.a. Distinct evenly spaced impulses can be observed from 

the reconstructed signal.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                                           (b) 

Fig.8. The purified signals obtained by the de-noising method based on adaptive Morlet wavelet and SCS; (a): Test rig 

bearing signal, (b): RCP bearing signal 

  

The measured distance between two successive impulse peaks of the presented diagrams represents the characteristic 

defect period, i.e. the inverse of the characteristic frequency. Quasi-periodic intervals equal to 4.1 ms can be found in 

the figure. These quasi-periodic intervals are equivalent to the inverse of the ball-passing frequency outer-race (BPFO) 

which is 141 Hz as listed in Table 1. Hence, it can be concluded that the impulses are caused by the outer-race defect. 

Finally, it is worthwhile to observe from Fig.8.a, that only defect-induced impulse clusters are retained in the 

reconstructed signal. This indicates the effectiveness of the proposed algorithm in cancelling out the environmental 

noise even with small defect.  

 

Thereby, the result of SCS de-noising method on RCP bearing signal is plotted in the Fig.8.b. One can observe on 

reconstructed signal using SCS de-noising method some random peaks without fixed periodicity, which are not related 

to faulty impulses. It can be concluded now that the reconstructed signal shown in Fig.8.b is the characterised signal 

pattern of the bearing without raceway defects on bearings. In view of that, by considering the results obtained, the 

proposed algorithm shows a great promise in highlighting the defect-induced impact in the vibration signals for 

bearing fault diagnosis.     
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7. Conclusion   

  

The wavelet de-noising method proposed in this paper not only employs the adaptive Morlet wavelet based beta-optimization, as the basic wavelet, but also utilizes prior information on the pdf of the signals to be identified. The new adaptive SCS thresholding 

rule is effective at extracting the impulsive features buried in the noisy signals even when the SNR is very low. In applications, the SCS thresholding method can be used directly to detect impulses, because the pdf of any impulse signal is always very sparse. 

such results helps the machine operators not only in detecting the existence of faults on bearing at its initial stage, but also in identifying the causes of faults by using the information of the time intervals which is provided by reconstructed signal.   
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